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Estimation of diffusion parameters in functionalized
silicas with modulated porosity
Part II: Pore network modeling
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Abstract

In this work, the pore structure of those five (5) silicas SiO2–X (see Part I) which have suffered gradual functionalization with functional
groups X of increasing length (X = Ø,≡Si–H, ≡Si–CH2OH, ≡Si–(CH2)3OH, ≡Si–(CH2)11CH3), is modeled as a three-dimensional cubic
network of cylindrical pores. Those hybrids organic–inorganic SiO2–X samples are characterized by different extent of pore blocking effects.
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he pores of samples are represented in a 9× 9× 9 lattice by the nodes as well the bonds that are interconnected in a so-called dual s
odel, DSBM, network. The pore network is developed using a Monte Carlo statistical method where the cylindrical pores (n
onds) are randomly assigned into the lattice, until matching of the theoretical results to the experimental data of N2 adsorption–desorptio
easurements. Thus, a visual picture of the porous solid is possible. This realistic network is used next in order to study the stea

ransport (Knudsen gas-phase and viscous diffusion) properties for the examined materials and how flow processes depend on the
f the pore structure. Thepore diffusivity Dp andtotal permeability Pof each porous medium is determined based on theoretical calcul
nd the structural statistical parameters, such as porosityεp, tortuosity factorτ and connectivitycof pores is discussed with the correspond
xperimental data described in Part I of this work. The results indicate clearly that the diffusion model made it possible to predict por
iffusivity in these porous media in very good agreement with the corresponding experimental results for all the examined solids (P
ore diffusivity increases significantly as the value of the pore connectivity increases but the transport properties of the network are
trongly at lowest connectivity. Also the predicted tortuosity factor is related inversely to the extent of interconnection of pores in the,
hich indicates that the influence of pore branching to the tortuosity factor of the pore network decreases, as connectivity increas
2005 Elsevier B.V. All rights reserved.
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. Introduction

The understanding of the relationship between the gas
ransport phenomena occurring within the void space of ma-
erials and into their pore structure is an important step in the
esign of new porous adsorbents and catalysts. Such prob-

ems are of great theoretical and practical interest for soil
cientists, chemists and chemical and petrochemical engi-
eers. The porous materials often possess complicated in-

ernal architecture with pores of various sizes and shapes
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interconnected in different arrangements. For this reaso
problem of representing the porous structure and diffu
processes occurring within them is very complex. Firs
detailed description of the materials must be sought us
suitable mathematical model. Second, a diffusion mode
describes transport procedures must be applied at each p
that porous model. While the local diffusion model provi
successfully the dynamic and equilibrium properties for e
pore, a convenient and/or simplified representation of the
network is necessary for predicting the diffusion param
and the transport properties in the whole porous system

Frequently, the study of flow and transport processe
porous media is based on pore network model. One o

021-9673/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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most common network models developed, are those based
on the so-called regular or random lattice. In this network
model, a two- or three-dimensional lattice of nodes, which are
interconnected by bonds, represent the pores of the real sys-
tem. Models have been constructed from lattices categorized
in two broad classes: (i) the pore bond models, consisting
of a network of pore bonds[1–8] and (ii) the dual site-bond
models, consisting of porous voids located at the nodes of the
lattice with pore necks making the bond connections between
these nodal sites[9–11]. Fitting such models to the experi-
mental data may give information about the porous topology.
Other models have suggested to represent the porous medium
are the Bethe lattice[12–15]and the random packing of ran-
domly placed spheres[16,17]or rods[18,19]. The flow and
transport passes in such networks, take place through the
channels between the overlapping or non-overlapping inclu-
sions[20]. However, these particular types of models have
highly convoluted and complex structures and are therefore
difficult to be characterized fully using statistical parameters.

Discrete pore network models can be used in model-
ing transport processes such as single phase and two phase
fluid flow, effective pore diffusivity and sorption phenomena
[4,21–24]. In all cases, a mass balance equation for diffusion
into the pores is set up and solved for the pore network. By
calculating the concentration profile in the network, the tran-
sient diffusivity and the steady-state diffusivity are found.
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of each porous medium is determined based on theoretical
calculations and the structural statistical parameters, such as
porosityεp and connectivitycof pores is discussed. Also, the
tortuosity factorτ is briefly discussed in the text. A further
point of the present paper is a comparison between the pre-
dicted effective parameters, i.e.Deff, based on the diffusion
network model and the corresponding results found from the
experimental measurements described in Part I of this work.

2. Model description

2.1. Pore network model

The pore structure of the solid was modeled as a regular
three-dimensional cubic lattice of interconnected cylindri-
cal pores. The maximum coordination number for a node in
that cubic network is equal to 18 when one considers nearest
neighbors only. The network surface is represented by two
opposite faces of the network and periodic boundary con-
ditions were applied at the other four faces. The pore walls
were considered to be smooth. The pore volume of the solids
was represent in the lattice from the nodes as well as from
the bonds connecting the nodes. The pore radii, estimated
from nitrogen adsorption measurements, are semi-randomly
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ryntesson[25] has found that those two diffusivities a
qual for three-dimensional networks when the connec
as reached the percolation threshold of about 1.5. Al

s true that if the connectivity of a regular network and
verage connectivity of a random network are the same
acroscopic properties of two networks are very close[26].
herefore, it suffices to use cubic lattice and extending
onds to connect second or higher nearest neighbors n

In Part I, we studied the diffusion in five (5) function
zed silicas SiO2–X. In Part II, the pore structure of those fi
5) silicas SiO2–X which have suffered gradual function
zation with functional groups X of increasing length (X =

Si–H,≡Si–CH2OH, ≡Si–(CH2)3OH, ≡Si–(CH2)11CH3),
s modeled as a three-dimensional cubic network of cylin
al pores. Those hybrids organic–inorganic SiO2–X samples
re characterized by different extent of pore blocking effe
he pores of samples are represented in lattice by the
s well the bonds that are interconnected. The pore ne

s developed using a Monte Carlo statistical method w
ylindrical pores (nodes and bonds) are randomly ass
nto the lattice, until theoretical results matching to exp

ental measurements[27]. Those networks are advantage
n several respects, especially for the distribution of con
ivities in the pore space. Also local heterogeneities ca
hus modeled and percolation phenomena in the networ
e described. This realistic network is used here in ord
tudy the steady-state gas transport (Knudsen gas-pha
iscous diffusion) properties for the examined materials
ow flow processes depend on the morphology of the
tructure. Thepore diffusivity Dp and total permeability P
d

istributed over the nodes and the bonds of the co-c
ual site-bond model, DSBM, network. Next, the relative
angement of pores (nodes and bonds) changes acc
o a Monte Carlo methodology until the theoretical res
imulate the experimental data of N2 adsorption–desorptio
easurements. Thus, a visual picture of the porous so
ossible. Parameters that can be found from this mode

he distributions of pore connectivities and the pore size
ell as the average local tortuosity. For all the simulat
resented in this work, a lattice size of 9× 9× 9 was used
hich provides a satisfactory representation of the pore
ork and does not require excessive computational time.

cal computation time for each sample was 1 week. De
f the network description and the method of computa

here are in a previous publication[27].
The application of diffusion equations for each pore of

SBM network was based on the following approach:

The mean connectivitycmean, the porosityεp, as well as
the pore size distribution (PSD) are known paramete
the model.
The flow through the network (�x, �y, �z) takes place alon
thez-direction perpendicular to (�x, �y) plane of the cube.
The driving force of diffusion is the concentration gra
ent�C/l between the ends of pores. Through each p
which is considered to have lengthl equal to their diamete
d (l = 2r =d) [27], a linear change of the concentration
considered to take place. This is in agreement with ex
imental observations[22].
The diffusion takes place in the pores of the network w
out adsorption phenomena.
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To enable the calculation of effective properties, i.e. pore
diffusivity and pore permeability, into the pore network
model, we can use the bond network. In this case, the mass
flux is proportional to the pore diffusion coefficient, to the
bond cross-sectional area and finally to the difference be-
tween the concentrations of the connected nodes[25]. There-
after, we changed the problem of double site-bonds network
in simple bonds network, relating the volume of nodes to the
volume of bonds according to the relation:

Vn =
c∑

i=1

V ′
b (1)

whereVn present the volume of node,c the connectivity of
the node and� expresses the sum of additional volumeV ′

b
that assign to the bonds connecting the node.

This approach is similar to bonds network model used by
Meyers and Liapis[5,6] to calculate transport properties of
small and large molecules in porous network.

2.2. Diffusion in single pores

The diffusion flowJ of the dilute gas through a narrow
cylindrical pore of radiusr and lengthl, in the absence of
adsorption, is given by the following equation[21]:

J
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whereDK is the Knudsen diffusivity (cm2 s−1), which is cor-
related to the pore radiusr according to Eq.(5).

DK(r) = 2r

3

√
8RgT

πM
(5)

wherer is the radius of pore (cm),Rg the universal gas con-
stant (8.314× 107 g cm2 s−2 mol−1 K−1), T the temperature
of the system (K) andM is the molecular weight of fluid
(g mol−1).

Under the influence of a pressure gradient along the pore,
viscous flux occurs in addition to the diffusive flux. The vis-
cous flux is given by:

JV = −DV
dC

dz
(6)

whereDV is the viscous diffusivity (cm2 s−1), which is cor-
related to the pore radiusrp and the concentrationC of fluid
according to Poiseuille’s law (Eq.(7)).

DV(r, CA) = RgT
r2

8η
C (7)

whereη is the viscosity of fluid (g cm−1 s−1) andC is the
vector of the concentration of the fluid into the nodes.

At the outer surfaces of the nodes of the network a bound-
ary layer is assumed, perpendicular to the direction of flux.
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hereP is the permeability of the model pore (cm2 s−1) and
C is the difference of the gas concentration between
ore ends (mol cm−3). The minus sign in Eq.(2) means tha
s the diffusion is realized, the concentration gradient�C/l
ecreases.

Eq. (2) describes the diffusion that takes place in a p
ith well-defined structure, as for example, in a straight cy
rical pore with smooth internal surface. Nevertheless,
D pore network—as it is the case in real solids— in o

o obtain the permeabilityPof the network in terms of diffu
ion, it is essential to express the total diffusion flowJ0 with
he corresponding diffusion rates in each pore (Eq.(2)). This
s achieved if we use a suitable mathematical model w
epresent satisfactorily the morphology of solid, as we
he pore volume distribution, the connectivity and finally
ortuosity of the pores.

The mass transport in the single pore is described as
f KnudsenJK diffusion and viscousJV flux:

= JK + JV (3)

The surface diffusion term can be included in Eq.(3) if
ecessary, although this mechanism of diffusion has not

aken into account in the model described here.
The Knudsen fluxJK is given by the following expressio

K = −DK
dC

dz
(4)
he top layer of nodes can be reduced to single node w
he sum of the mass flux between this node and all of th
aining nodes into the network is equal to the specified
ass fluxJ ′

0. Similarly, the bottom surface of the netwo
an be reduced to a single node where the sum of the
uxes moving away from the nodes inside the network to
ode is equal to the negative of the total specified mass
J ′

0 [5].
Then, for every interior node of network the fluxes of

as that enter a node must be equal to the fluxes leavin
ode. At the inner nodes of the network, an equation sim

o Kirchhoff’s law must be satisfied:
n

j=1

J ′
ij =

n∑
j=1

Jij

πr2
ij

=
n∑

j=1

(
Pij

Ci − Cj

lij

)
δij = 0 (8)

hereJ ′
ij represent the molar flow per unit cross sectio

rea of the bondbij perpendicular to the direction of flo
etween nodesi and j, Pij the permeability of bondbij , Ci
ndCj the concentrations of gas component at the nodesi and

, respectively,n the total number of nodes in the netwo
ij the length of pore bondbij andδj is a delta function tha
s equal to unity when the nodei is connected by a pore
djacent nodej or equal to zero when is not connected.

The simultaneous solution of Eqs.(3)–(8) provides the
oncentration profile of gas fluid for each node of the netw
he solution of these equations is reduced substantially
roblem ofn×n non-linear equations:

i

J′ = E(r, C)C = 0 (9)
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whereJ′ present the vector of molar fluxes,C the vector of
node concentrations andE is the squaren×nmatrix. Then
the calculation of the Knudsen and the viscous diffusivities
at each node of lattice, can be executed according to the fol-
lowing expression:

Eij(rij, Ci)

=




2rij

3lij

√
8RgT

πM
+ RgT

rij
2

8lijη
Ci, if i 
= j

−
∑
i
=j

2ri

3li

√
8RgT

πM
−

∑
i
=j

RgT
ri

2

8liη
Ci, if i 
= j

(10)

The diffusion model described above was coded in the
ForTran 90/95 programming language in order to obtain the
answers to the questions seeked. The non-linear equations for
the single pores were solved using the ForTran MINPACK
routine HYBRJ1, which applies the modified hybrid method
of Powell [28]. The Jacobian was given in the algorithm for
each node of the network.

In order to determine the pore diffusivityDp of gas fluid
in the porous network, we must first calculated the total per-
meabilityP of the lattice. The total permeabilityP includes
the permeability of nodes as well as that of the bonds of the
lattice according to the following relation:

P
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P

Pi = DK,i(ri) + Dv,i(ri, Ci) (14b)

whereDK,ij , Dv,ij andDK,i, Dv,i is the Knudsen and viscous
diffusivities for the bondbij connecting nodesi andj and the
nodei, respectively.

The pores diffusivityDp of the porous network for pure
gas-phase transport is then obtained by:

εpDp = P (15)

whereεp is the voidage of the lattice.

3. Results and discussion

3.1. Pore network model

The values of the mean connectivitiescmeanobtained from
the DSBM pore network estimated as described in ref.[27],
as well as the values of the correlation coefficientRsq corre-
sponding to the best fitting between the simulated and exper-
imental N2-desorption curves, are show inTable 1. In the
same table, the values of the voidageεp from the model
and the porosityε of the examined solids are cited. With
this network model, we can determine the node/pore con-
nectivity distribution of the network[27,29]. This kind of
distributions—normalized to unity—is shown inFig. 1 for
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here the factor 1/2 is used because each pore is co
wice in the summation,Aij andAi the cross-sectional areas
ondπ(rij )2 and nodeπ(ri)2 perpendicular to thez-direction,
espectively,ci the number of bondsj that connected to th
odei, Ao the cross-sectional area of the pores,vij represen

he ratio of the pore lengthlij to the shortest distance co
ecting the nodei with neighboring nodej, and�cij is the
ormalized concentration difference between nodesi and j,
here

i = ci − cn

c1 − cn

with boundary conditionsc1 = 1 andcn = 0

(12)

The cross-sectional areaAo for spherical particles diam
erds is given by:

o = πd2
s

4

(
1 − εb

εb

)
(13)

hereds is the mean diameter of particles andεb is the poros
ty of the bed.

The permeabilitiesPij andPi in Eq.(11)take into accoun
he Knudsen diffusivity and the viscous diffusivity of bon
nd nodes in the lattice, respectively, according to Eqs.(14a)
nd(14b).

ij = DK,ij(rij) + Dv,ij(rij, Ci) (14a)
ll the samples. We observe that the connectivity value
ores/nodes, as well thecmeanones, decrease in a system
ay with the extent of carbon length of the immobilized
anic groups, as actually expected. This effect is due t
radual blocking of the small pores by the organic gro
s a result the mean connectivity values drop significa

rom cmean= 6.5 at SiO2 solids without functionalization t
mean= 3.6 at SiO2–(CH2)11CH3 solids with functionalize
roup with maximum carbon length.

The estimation of the average tortuosity factor in the w
ore network model was also performed using the so-c

ocal tortuosity method described elsewhere[27,29]. The val-
es of those theoretically estimated tortuosity factors fo

he examined solids are cited inTable 2. From these value
t is rendered clear that the tortuosity increases with the
locking effects that affect the immobilized organic grou

n other words, the predicted tortuosity factor is related
ersely to the extent of interconnection of pores for th
olids. This means that the influence of pores branchin

able 1
ore network model parameters determined by matching the experim
itrogen desorption data with the theoretical results obtained from D
imulations

ample cmean τp εp ε Rsq
a

iO2 6.5 4.7 0.67 0.66 0.999
iO2–H 5.5 5.6 0.63 0.64 0.998
iO2–CH2OH 4.5 5.9 0.61 0.63 0.999
iO2–(CH2)3OH 4.1 7.2 0.59 0.60 0.999
iO2–(CH2)11CH3 3.6 5.7 0.59 0.59 0.999
a The simulations are realized in 9× 9× 9 lattice size.
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Fig. 1. The normalized to unity distribution of connectivities for the SiO2–X sample. Thecmeanvalues are also shown.

the tortuosityτp of pore network decreases, as connectivity
increases. Those values of local tortuositiesτp are affected in
a similar way by functionalization as the corresponding tortu-
osities found from the experimental determination ofτ with
diffusion terms[30]. In Fig. 2, the variation of pore network
tortuosityτp as well as the experimental tortuosityτ of the
SiO2–X solids are shown for comparison. The discrepancies
between theτp and τ sets of values is attribute to the dif-

ferent approximations/simplifications which were taken into
account for these methods, but the general the trend for the
examined samples is similar in both cases.

In Fig. 3, two typical snapshots of the simulation of porous
network are shown. The pores in that representation are not
in scale because then it is not possible to distinguish the fine
details of the network. The red line represents the percolation
path of the network.
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Table 2
Diffusion parameters of pure gas (He) flow in pore network DSBM for the
SiO2–X materials

Sample Pore diffusivity,Dp
a

(10−3 cm2 s−1)
Permeability,Pa

(10−3 cm2 s−1)

SiO2 2.486 1.575
SiO2–H 2.003 1.282
SiO2–CH2OH 1.208 0.761
SiO2–(CH2)3OH 1.102 0.650
SiO2–(CH2)11CH3 1.333 0.800

a The simulations were realized in 9× 9× 9 lattice size with porosity of
bedεb = 0.3, mean radius of particleds = 1.0�m and viscosity of tracer gas
(He)η = 3× 10−4 g cm−1 s−1 [31].

Fig. 2. Variation of the local tortuositiesτp as well as of the experimental
valuesτ [27] with the extend of pores blocking by the indicated organic
groups.

3.2. Diffusion in the network model

Pore diffusion simulations of pure gas fluid (He) were per-
formed using the modeling theory, as described above, in or-
der to determine the pore diffusivity and the total permeability

Fig. 4. Average concentration profiles in pore network model for (a) SiO2

and (b) SiO2–(CH2)3OH samples. The fractions 0.1, 0.2,. . ., 1.0 correspond
to the reduced concentrations of fluid (He).

of pore network model, DSBM. InFig. 4, the calculated aver-
age concentration profiles normalized to unity, though thez-
direction, for two typical sample SiO2 and SiO2–(CH2)3OH
are shown. We observed that the average concentration in
(x, y) plane through the flow direction (z) drops more sharply
for SiO2–(CH2)3OH than for SiO2. This behavior is related
to the restricted percolation effects because of the increased
pore blocking that results from anchored organic residuals
inside the pores of SiO2 matrix.

The values of the estimated pore diffusivityDp and to-
tal permeabilityP of the pore network model are mentioned
in Table 2, for all the SiO2–X solids. These results indicate
clearly that the gas flow is substantially restricted from the
immobilized organic groups SiO2–X (X = –H, –(CH2)OH,
–(CH2)3OH and –(CH2)11CH3) inside the pores of hy-
brid solids. Namely, the pore diffusivity drops markedly
from 2.5× 10−3 cm2 s−1 at SiO2 to 1.1× 10−3 cm2 s−1 at
SiO2–(CH2)3OH material. However, the pore diffusivity of
SiO2–(CH2)11CH3 material with the greater immobilized
carbon length is slightly increased relative to the previous
sample. This discrepancy probably arises from the weakness
of the model to forecast satisfactorily diffusion parameters in

Fig. 3. Typical snapshots of the simulation of the network pores for the indic he
percolation backbone of the network.
ated sample: (a) SiO2 and (b) SiO2–(CH2)3OH. The red line corresponds to t
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Fig. 5. Comparison plots between the predicted valuesDp and the corre-
sponding experimental valuesDeff for the hybrid organic–inorganic SiO2–X
solids.

networks with low interconnectivity between the pores but in
any case the precise reason is not very clear for the moment.
In the case when the connectivity of pores is low,c∼ 3, the
effectiveness of the network for diffusion is described in frac-
tals terms. Similar cases have been reported by Bryntesson
[25], who has calculated the pore effective diffusivity of so-
lutes in poorly-connected networks. The simulations of the
model porous network by Meyers and Liapis[5] also yield a
percolation threshold at pore connectivity of 2.6. Below this
value the system does not include a percolation cluster of in-
terstitial pores which is necessary for flow through the porous
model. The variation of the pore diffusivity for the examined
solids is shown inFig. 5. In the same figure, the variation of
the corresponding pore diffusivityDeff which was determi-
nate from the experimental measurements in Part I[30], is
shown for comparison.

We observe that the predicted reduction of pore diffusivity
by the diffusion model is in very good agreement with the
corresponding experimental results for all the solids.

The dependence of the total permeabilityP and pore dif-
fusivity Dp from the voidageεp of the pore network for the
SiO2–X materials, are presented inFigs. 6 and 7, respectively.
In Fig. 7, the variation ofDeff with porosityε, found from
the experimental measurements, is illustrated for comparison
reasons.

It is clear that, both the theoretically pore diffusivity and
t lin-
e ug-
g sion
p eas-
i very
i pa-
r rm
y ed
t
t
p y

Fig. 6. Total permeabilityPof lattice as a function of the voidage of network.
The dash line that simulates the data is given the empirical law,y = A((x −
v)/(1 − x)) (A= 3.3× 10−3 cm2 s−1 andv = 0.51,Rsq= 0.9128), similar to
the relationy (x − 2/3)/(1 − x) found by Brosa and Stauffer[32] using
random cellular automata model.

of the system being very large at this point as seen inFig. 6.
We mentioned that the effective diffusion properties can be
found only in the case whereεp > 0.5 which corresponds to
the percolation threshold. Before that point the permeability
is zero (seeFig. 6). It should be noted that the relation between
the pore diffusivityDp and the voidage of latticeεp is influ-
enced by the network topology and is valid for pore network
system with similar mean connectivity. Indeed, the results for
Dp—and much more for theDeff values—can be represented
by the empirical law,D= (2p− 1), whereD is the effective
diffusivity normalized with respect to the value at porosity
p= 1, as suggested by Sahimi and Stauffer for a triangular
lattice [20]. Similar behavior between these parameters has
been reported by other researches[33,34].

F f
t .
T
1 cal
l d
b

he experimentally effective diffusivity varies essentially
arly with the voidage of pore network. Of course this s
estion constitutes a logical consequence of the diffu
rocesses, since the diffusion of fluid is realized more

ly as the porosity of solids increases. Nevertheless, a
nteresting point is related to the relative regression of
ameters inFig. 7. The formula of linear regression is a fo
= 16.8× 10−3x− 8.7× 10−3. This relationship can be us

o estimate pore diffusivityDp for a particular voidageεp of
he pore lattice. For example, atεp = 1 the pore diffusivity
redicted equalsDp ∼ 8× 10−3 (cm2 s−1), the permeabilit
ig. 7. Pore diffusivityDp and effective diffusivityDeff as a function o
he voidage of latticeεp and the porosityε of SiO2–X solids, respectively
he dash line simulates the theoretical data by linear relation,y = 16.8 ×
0−3x − 8.7 × 10−3 (Rsq= 0.9467) and the solid line give the empiri

aw, y = A(2x − 1) (A= 7.0× 10−3 cm2 s−1) similar to the relation foun
y Sahimi and Stauffer[20] in the triangular lattice.
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Fig. 8. Pore diffusivityDp vs. the mean connectivity of the pore network
model for examined solids.

In Fig. 8, the pore diffusivityDp versus the mean pore con-
nectivity cmean, is illustrated, for the SiO2–X solids. These
results indicate clearly that for low values of the pores con-
nectivity, the pore diffusivity is very low but at high values
of connectivity the pore diffusivity is significantly enhanced.
It can be observed that the increase of the pore diffusivity
with cmean in the range 4 <cmean< 6.5 is more significant.
This result is due to the fact that the pores in the network are
not interconnected significantly in the range 4–6.5, as to pro-
vide a good effective network. The connectivity must obtain
higher values in order to allow for free transport through the
pore network. Similar behavior between those parameters,
i.e. pore diffusivity and pore connectivity have been reported
by Meyers and Liapis[5], and Bryntesson[25]. Those authors
have calculated transport properties in the pore network, near
the percolation threshold, in the case when the size of solutes
is comparable to the pore size.

This variation can be understood according to the sug-
gestion that the diffusion resistance is strongest for the low
connected pore network, but in the high-connected network
the diffusion resistances are mainly due to pore size distribu-
tion and not to the networking topology.

4. Conclusions

tion
m rous
m ore
s e (5)
s l and
c ion
w ion
m vity
i cor-
r olids
( the
t ngly

at lowest connectivity. Therefore, this last property is an ex-
tremely important parameter for the characterization and de-
velopment of porous solids. The results show that the pore
diffusivity increases significantly as the value of the pore
connectivity increases. Also the tortuosity factor in the model
porous network was estimated and compared to the tortuosity
values calculated for the same materials with the experimen-
tal measurements (Part I of this work). It is rendered clear that
tortuosity increases with the pore blocking effects from the
immobilized organic residual inside the silicate pores. The
predicted tortuosity factor is related inversely to the extent
of interconnection of pores for these solids, which indicates
that the influence of pores branching to the tortuosity factor
of the pore network decreases, as connectivity increases.

Nomenclature

A pore cross-sectional area (cm2)
Ao cross-sectional of pore network model (cm2)
bij pore-bond connecting nodesi andj
c pore connectivity of the porous network
c normalized to unity concentration (mol cm−3)
C node gas-phase concentrations (mol cm−3)
C vector of node concentrations (mol cm−3)
d
D
D
D
J
J
J
J

J
l
M
n
P
r
R
T
V
V
z

G
E
� ends

ε

ε

ε

η

τ

τ

In this paper we have described an efficient computa
ethod for studying flow and transport process in po
edia, using a dual site-bond lattice model, DSBM, of p

pace. To be more precise we test the model using fiv
amples of mesoporous silica which suffered a gradua
ontrolled modulation of their porosity by functionalizat
ith organic groups of various chain lengths. The diffus
odel made it possible to predict pore effective diffusi

n these porous media in very good agreement with the
esponding experimental results for all the examined s
Part I of this work). The simulations clearly indicate that
ransport properties of the network are influenced stro
pore diameter (cm)
K Knudsen diffusivity (cm−2 s−1)
p pore diffusivity (cm2 s−1)
v viscous diffusivity (cm−2 s−1)

molar flow (mol cm−2 s−1)
′ molar flux (mol s−1)
′ vector of mole fluxes (mol cm−2 s−1)
′
0 total molar flux (mol s−1)

0 total molar flow (mol cm−2 s−1)
pore length (cm)
molecular weight (g mol−1)
total number of pores in the lattice network
permeability of fluid in porous model (cm2 s−1)
pore radius (cm)

g universal gas constant (g cm2 s−2 mol−1 K−1)
temperature (K)

b bond-pore volume (cm3)
n node-pore volume (cm3)

length coordinate (cm)

reek letters
matrix of diffusion coefficients factors

C concentration difference of gas between pore
(mol cm-3)
porosity of solids

b porosity of bed
p voidage of lattice

viscosity of fluid (g cm−1 s−1)
mean local tortuosity factor

p tortuosity factor
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